一道关于零点定理的证明题

2023-07-28 00:48:09
来源:哔哩哔哩

题目如下:

证明:实系数三次方程必有实根。

可以自己先进行思考,然后动笔计算,在与答案对照。


(资料图片)

注:答案仅为参考

解答如下:

证明:设函数f(x)=(),其中p,q,r均为实数。

因为

其中必有a,b使得,

又∵f是连续函数,故根据零点定理,(a,b)中必有实数c使得f(c)=0

因此实系数三次方程必有实根。

原命题得证

是不是很简单呢,本题考查利用零点定理证明方程有实根,主要是对零点定理的理解和使用,注意好零点定理的使用条件,此题不难求解。

你作对了嘛?

零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,则在开区间至少有一点

,使得

关键词:

[责任编辑:]

为您推荐

时评

内容举报联系邮箱:58 55 97 3 @qq.com

沪ICP备2022005074号-27 营业执照公示信息

Copyright © 2010-2020  看点时报 版权所有,未经许可不得转载使用,违者必究。